Machine Learning Immersive

lun. 10 septembre à 16:00

Fuseau horaire : Paris (GMT+02:00)

Practical Programming
New York
États-Unis
New York

Sign up for this class here: https://programwithus.coursehorse.com/nyc/classes/tech/it/big-data/machine-learning/machine-learning-immersive September 10th-September 14th This is One week course, Monday to Friday from 10am to 5pm. Total in-Class Hours, 35


Machine learning is a very hot topic for many key reasons, and because it provides the ability to automatically obtain deep insights, recognize unknown patterns, and create high performing predictive models from data, all without requiring explicit programming instructions. If you are aspiring programmer, whether beginner or jedi, this course is for new learners on the pursuit to master machine learning concepts. This course discusses the FUNDAMENTAL principles of machine learning. No prior machine learning experience necessary. Beyond doing your part as a hard working student, you walk away with skills that translate to the programming marketplace that can either cultivate your future programming career or give you a bump in your pre existing career by showing employers your new skillset. The decision on how hard you work lies with you. In this one week course, you will become involved in a decision-making process surrounding the usage of machine learning, how it can help achieve business and project goals, which machine learning techniques to use, potential pitfalls, and how to interpret the results. In this class, you will learn about the most effective machine learning techniques, and gain practice implementing them and getting them to work for yourself. More importantly, you'll learn about not only the theoretical underpinnings of learning, but also gain the practical know-how needed to quickly and powerfully apply these techniques to new problems. Workflow: Typical studying day starts at 10pm with a previous day recap and completing previous exercises. Lecture on new topics takes about two hours and starts at 11.00pm. After lecture, students start working on new exercises with instructor guidance. Around 3pm students present and discuss their work with instructors, learn alternative solutions, and best practices from instructors and invited professional programmers. You will learn:

Regression: Linear Regression, Polynomial Regression, Backward Elimination of Regressors

Classification: Naive Bayes, Logistic Regression, Support Vector Machines

Resampling, Bootstrapping, and Cross Validation

Regularization: Lasso and Ridge Regression

Dimension Reduction Trees: Decision Trees, Bagging, Boosting, Random Forest

Unsupervised Learning: K-Means Clustering, Neural Networks: Intro To Artificial Neural Networks and Deep Learning Prerequisites & Preparation: Python Programming 101

Laptop

Source: https://www.meetup.com/fr-FR/New-York-Data-Science-Analytics/events/253194813/


Practical Programming
New York
États-Unis

Technologie
Nous avons temporairement désactivé la possibilité de naviguer vers les tags.